博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Whitening transformation(白化变换)
阅读量:6330 次
发布时间:2019-06-22

本文共 1440 字,大约阅读时间需要 4 分钟。

(from: wikipedia)

 

The whitening transformation is a  method which transforms a set of random variables having the  Σ into a set of new random variables whose covariance is aI, where a is a constant and I is the . The new random variables are uncorrelated and all have  1. The method is called "whitening" because it transforms the input matrix to the form of , which by definition is uncorrelated and has uniform variance. It differs from decorrelation in that the variances are made to be equal, rather than merely making the covariances zero. That is, where decorrelation results in a diagonal covariance matrix, whitening produces a scalar multiple of the identity matrix.

 

Definition

Define X to be a  with covariance matrix Σ and mean 0. The matrix Σ can be written as the  of X and XT:

\Sigma = \operatorname{E}[XX^T]

 

(注,我初一看以为写错了,按我的想法好像写成 E[XiXj] 更靠谱,我又想了想,后来明白了,E[XiXj]这样写的话,括号里面成了两个变量,而实际应该是一个变量(总体),前后可以是两个变量样本值。所以 E[XXT]这样写是有道理的,只是注意不要误解吧。还可以这样写 E[XYT],X和Y是同分布,但是这是表示两个一般变量协方差的常用方法,显然和这里X是向量的环境不符合。)

 

Define Σ1/2 as

\Sigma^{1/2}(\Sigma^{1/2})^T = \Sigma

Define the new random vector Y = Σ-1/2X. The covariance of Y is

\begin{align}     \operatorname{Cov}(Y)         &= \operatorname{E}[YY^T] \\         &= \operatorname{E}[(\Sigma^{-1/2}X)(\Sigma^{-1/2}X)^T] \\         &= \operatorname{E}[(\Sigma^{-1/2}X)(X^T\Sigma^{-1/2})] \\         &= \Sigma^{-1/2}\operatorname{E}[XX^T]\Sigma^{-1/2} \\         &= \Sigma^{-1/2}\Sigma\Sigma^{-1/2} \\         &= I \end{align}

Thus, Y is a white random vector.

Based on the fact that the covariance matrix is always , Σ1/2 can be derived using :

\Sigma\Phi = \Phi\Lambda
\Sigma = \Phi\Lambda\Phi^T
\Sigma^{1/2} = \Phi\Lambda^{1/2}

Where the matrix Λ1/2 is a diagonal matrix with each element being square root of the corresponding element in Λ. To show that this equation follows from the prior one, multiply by the transpose:

\begin{align}     \Sigma^{1/2}(\Sigma^{1/2})^T &= \Phi\Lambda^{1/2}(\Phi\Lambda^{1/2})^T \\     &= \Phi\Lambda^{1/2}(\Lambda^{1/2})^T\Phi^T \\     &= \Phi\Lambda\Phi^T \\     &= \Sigma \\ \end{align}

转载于:https://www.cnblogs.com/kevinGaoblog/archive/2012/06/20/2556335.html

你可能感兴趣的文章
mail 服务
查看>>
iptables基础
查看>>
李洛克
查看>>
开发人员MySQL调优-实战篇2-让SQL使用索引详解
查看>>
Eureka VS Zookeeper
查看>>
电梯下坠时怎么办?
查看>>
理解vuex -- vue的状态管理模式
查看>>
1、时间、FHS 学习笔记
查看>>
非对称加密与安全证书看这一篇就懂了
查看>>
IDEA坑爹跟新的小BUG解决之道
查看>>
第四章第五章 环境搭建和24个命令总结
查看>>
对象拷贝类PropertyUtils,BeanUtils,BeanCopier的技术沉淀
查看>>
linux下mysql配置文件my.cnf详解[转
查看>>
JAVA 中HashSet 的实现
查看>>
Session保持状态
查看>>
Hadoop2.x与hadoop的区别
查看>>
响应式编程笔记(二):代码编写
查看>>
Nand Flash & Nor Flash
查看>>
VirtualHost 的配置
查看>>
Exchange 2013与Office 365在2016年4月15日之前混合部署的环境需要注意
查看>>